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a b s t r a c t 

Recently, an image encryption scheme using 2D Hénon-Sine map and DNA coding ap- 

proach is proposed. It adopts the permutation-diffusion architecture. The DNA random 

coding and exclusive OR is introduced for image diffusion, while image scrambling is im- 

plemented by pixel swapping operations. This paper reveals that this encryption scheme 

is not as secure as declared. Substitution boxes (s-boxes) are firstly employed to summa- 

rize the involved complicated DNA encryption operations, the whole encryption scheme is 

subsequently relaxed as an s-box-then-permutation cipher. Chosen-plaintext attack is fea- 

sible for recovering the equivalent secret elements of the s-boxes and permutation vector. 

The proposed concept of generalizing DNA encryption as s-box substitution is expected to 

be beneficial for security evaluation and theoretical design of DNA-based image encryption 

schemes in the future. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Multimedia sharing and exchanging across public networks is becoming an important issue of our daily life. Together

with the ever-growing appreciations of security and privacy, how to protect multimedia data against eavesdropping and

abusing has drawn world-wide concerns. Encryption is the most straightforward protection way. In literature, traditional

block ciphers has been reported un-suitable for multimedia data [2] . On the other hand, it is found that the properties of

chaotic systems could be exploited to achieve satisfied permutation and diffusion performance for image encryption. Bene-

fiting from the groundbreaking contributions of Fridrich [8,29] , recent years have witnessed a booming of chaos-based image

encryption schemes. They are mostly under the permutation-diffusion architecture. Their innovations are achieved in terms

of pixel shuffling techniques [7,9] , image diffusion means [3,24,30,32] , encryption-compression concepts [14,19,45,47] as well

as novel key stream generation mechanisms [16,17,23,37,46] . Besides, incorporation of optical transforms for image encryp-

tion also draw much concerns [12,26–28] . They can take advantages of high speed and parallel processing of optical trans-

forms, and also benefit from the cryptographic features of chaotic systems. Some basic cryptographic requirements of chaotic

ciphers have been standardized in [2] . 

Originating from the intrinsic advantageous such as inherent parallelism, low-power consumption and huge storage, DNA

computing also emerges as a hot branch in cryptography. In such cryptosystems, DNA bases serve as the information carriers

while biological regulations are employed as arithmetic principles. Ciphers combining DNA computing with chaos theory

therefore becomes a matter of course, as they share mutually beneficial advantageous for designing cryptographic algo-
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rithms. The permutation-diffusion structure is also widely-adopted in such ciphers. The algorithm in [42] is a typical case.

The plaintext is firstly transformed to DNA bases which are subsequently scrambled with the help of a hyper-chaotic sys-

tem. Then DNA exclusive OR (XOR) is followed to mix the shuffled DNA bases with a secret matrix, finally a DNA decoding

procedure is employed for the translation to pixel format. Such a design has been extended for color image encryption

in [36] , where DNA addition, subtraction and XOR operations are combined for pixel value modification. It is proposed in

[35] to use joint pixel-level and DNA-level encryption for security promotion. Specifically, plain pixels are firstly transformed

as DNA bases which are subsequently scrambled and DNA XORed for confusion and diffusion in DNA level. However, this

ciphertext is encrypted again by XOR and modulo addition in pixel level. Random coding technique which means the encod-

ing and decoding rules are distinct from each pixel is adopted in [6,10,11] . In this scenario, the secret rules can significantly

promote the security level as coding with fixed rule is vulnerable against brute force attack [44] . Furthermore, researchers

of [15] proposed to use DNA insertion and deletion to confuse the DNA bases. Hash function is nowadays introduced to

DNA-based image ciphers frequently [4,5] . It is usually employed to generate a plaintext-related perturbation for updating

the secret key. The encryption elements are therefore partly dependent on the plaintext itself, and further make the plain-

text attack infeasible. In [34] , Wu proposed a novel image encryption scheme based on the permutation-diffusion network.

A prepositive diffusion procedure using DNA arithmetic is firstly conducted, then a permutation phase is implemented by

pixel swapping operations. For randomness of the encryption elements, a two-dimensional Hénon-Sine map (2D-HSM) is

developed and used for key stream generation. The widely-adopted security analysis suite has been conducted for security

declaration. 

Cryptanalysis is another important branch in cryptography. Of course, it is also of great value for security evaluation of

the studied cipher [34] . Some DNA-based image encryption schemes have been found vulnerable against various attacks

[1,22,43,44] . For example, it was found [43] that the DNA-based image cipher in [42] was insecure against chosen-plaintext

attack. Several plaintext-ciphertext pairs are sufficient to retrieve the equivalent encryption masks, and then the received ci-

phertexts can be recovered directly. However, most of the cryptanalysis achievements [1,22,43] were proposed for a specified

encryption scheme. They cannot be used for breaking other DNA-based image ciphers. In other words, the cryptanalysis ap-

proaches and attack methods proposed in [1,22,43] , including the generalized analysis in [44] , is not applicable for cracking

this cipher [34] . 

In this paper, the security of Wu ’s cipher [34] is re-evaluated. We firstly generalize the complicated DNA encryption

operations (random encoding, XOR and random decoding) as substitution-boxes (s-boxes). The whole encryption scheme is

subsequently relaxed as an s-box-then-permutation cipher. Furthermore, we reveal that the equivalent encryption elements

can be retrieved by chosen-plaintext attack. Both of the theoretical cryptanalysis and attack procedures are given, and the

feasibility has been experimentally validated. This work is different from and can be considered as extension of a related

cryptanalysis [44] , where Zhang focused on encryption algorithms that adopt secret yet fixed DNA coding rule for all pixels.

Therefore, brute force attack can be introduced for breaking such DNA encryption patterns. We move one step further. In

the studied cipher, the DNA encoding/decoding role is random for each particle which makes brute force attack infeasible.

We firstly employ s-box to generalize the complex DNA encryption procedures, and this idea is expected to be beneficial for

the future design and security evaluation of involved ciphers. 

The primary contributions of this paper can be categorized as follows. 

1) S-box is firstly employed to synthesize cryptographic effects of the complicated DNA encryption operations. 

2) Security evaluation of an image encryption scheme using 2D Hénon-Sine map and DNA coding is conducted. 

3) A chosen-plaintext attack which can retrieve equivalent encryption elements is proposed and verified. 

4) Discussions regarding image ciphers incorporating chaos and DNA coding techniques are given. 

The remainder of this paper is organized as follows. The encryption scheme under study will be sketched in the next

section, while its cryptanalysis and chosen-plaintext attack are detailed in Section 3 . The experimental validation and relative

discussions are demonstrated in Section 4 , and Section 5 concludes the paper finally. 

2. The image cipher under study 

We briefly review the studied encryption scheme here, interested readers can refer to Wu et al. [34] for more details. 

2.1. Notations 

Otherwise indicated, bold uppercase is used to denote an assemble which may be an image or a matrix. It generally

refers to the secret elements such as permutation vector or diffusion masks. On the other hand, lowercase is adopted

for representing a variable or element of corresponding assemble (in bold uppercase). The uppercase always denotes a

constant. For example, a plain image P is with size M × N and thus has L = M × N pixels. It can be represented as

P = { p(1 , 1) , p(1 , 2) , . . . , p(i, j) , . . . , p(M, N) } , or P = { p(1) , p(2) , . . . , p(i ) , . . . , p(L ) } . 
2.2. Preliminaries 

A new chaotic map, i.e., 2D-HSM, is developed for key stream generation in [34] . The mathematical formula of 2D-HSM

is illustrated in Eq. (1) , where a ∈ (−∞ , + ∞ ) and b ∈ (−∞ , + ∞ ) being control parameters. With the initial status [ x (0), y (0)]
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Table 1 

Eight kinds of DNA coding rules. 

Rule A T C G 

Rule 1 00 11 10 01 

Rule 2 00 11 01 10 

Rule 3 11 00 10 01 

Rule 4 11 00 01 10 

Rule 5 10 01 00 11 

Rule 6 01 10 00 11 

Rule 7 10 01 11 00 

Rule 8 01 10 11 00 

Table 2 

XOR operation of two DNA 

bases. 

XOR A T C G 

A A T C G 

T T A G C 

C C G A T 

G G C T A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and control parameters [ a, b ], two serials of chaotic variables can be iteratively produced. 

{
x (n + 1) = (1 − a · sin 

2 (x (n )) + y (n )) mod 1 

y (n + 1) = (b · x (n )) mod 1 

(1) 

The DNA coding technique is employed for concealing pixels’ gray value. A DNA sequence may have four kinds of nucleic

acid bases, the so-called A (adenine), G (guanine), T (thymine), C (cytosine), respectively. Referring to Watson-Crick base

pairing rules, A always pairs with T, and so are C and G. Considering complementary feature of the binary stream, i.e., 00

comply with 11 while 01 are complementary with 10, there are a total of 8 valid coding rules between binary stream and

nucleic acid bases [44] . The coding rules are listed in Table 1 . Besides, XOR in DNA format is also employed in [34] , its

implementation rule is given in Table 2 . 

2.3. The encryption procedures 

To simplify the following cryptanalysis, DN A _ p = DN A _ enc(p, rule ) is defined as the DNA encoding function. It converts a

256-gray scale pixel p into a DNA base string DNA _ p (including four DNA bases 1 ), according to rule rule . On the other hand,

p = DN A _ dec(DN A _ p, rule ) translates a DNA base string DNA _ p into a 256-gray scale value p . The symbol � is employed to

denote DNA XOR, as listed in Table 2 . Without loss of generality, it also represents bit-wise XOR of two variables in binary

format. Two combinations of control parameters and initial values of 2D-HSM, i.e., [ a 1 , b 1 , x 1 (0), y 1 (0), a 2 , b 2 , x 2 (0), y 2 (0)],

jointly consist of the secret key of the encryption scheme. Assuming that the plaintext P is with size M × N , the encryption

procedures can be described as follows 2 

1) Initialization . 

a) Stretching the plain image into a one-dimension vector P = { p(1) , p(2) , . . . , p(L ) } , where L = M × N denotes

pixel counts (image length) of the plaintext. 

b) Producing two sets of chaotic state variables X 1 = { x 1 (1) , x 1 (2) , . . . , x 1 (L ) } and Y 1 = { y 1 (1) , y 1 (2) , . . . , y 1 (L ) } ,
X 2 = { x 2 (1) , x 2 (2) , . . . , x 2 (L ) } and Y 2 = { y 2 (1) , y 2 (2) , . . . , y 2 (L ) } . They are generated by iterating 2D-HSM with

the input keys [ a 1 , b 1 , x 1 (0), y 1 (0)] and [ a 2 , b 2 , x 2 (0), y 2 (0)], respectively. 

2) Diffusion . 

a) Calculating the modulo sum of the plain pixels, that is temp = 

∑ L p(i ) mod 256 . 
i =1 

1 256 gray scales images are adopted in [34] and this paper, its extension to color images or high-resolution plaintexts are straightforward. 
2 The given encryption processes are slightly different from those in the original paper, yet the encryption cores are identical. 
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b) Sequentially masking the plain pixels p ( i ) by Eq. (2) . ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

R x = round( x 1 (i ) × 10 

10 ) mod 8 + 1 

R y = round( y 1 (i ) × 10 

10 ) mod 8 + 1 

R z = round( x 2 (i ) × 10 

10 ) mod 8 + 1 

R = round( y 2 (i ) × 10 

10 ) mod 256 

DN A R = DN A _ enc(R, R z ) 
DN A 1 = DN A _ enc(p(i ) , R y ) 
DN A 2 = DN A 1 � DN A R 

t(i ) = DN A _ dec(DN A 2 , R x ) 
d(i ) = t(i ) � temp 
temp = d(i ) 

. (2)

c) After traversing all plain pixels, the diffusion image D is produced. 

3) Permutation . 

a) Generating the permutation vector W = { w (1) , w (2) , . . . , w (L ) } by quantizing X 1 through Eq. (3) . Then, remov-

ing redundant data until W contains un-repeated elements 3 from 1 to L . 

W = round( X 1 × 10 

10 ) mod L + 1 . (3)

b) Performing permutation to the diffused image D according to 

c(w (i )) = d(i ) , i ∈ [1 , L ] . (4)

The resultant vector C denotes the final ciphertext of this encryption scheme. By defining W as the permutation

function, C can also be described in matrix form, as given in Eq. (5) . 

C = W( D ) . (5)

3. Cryptanalysis and attack 

3.1. Equivalent illustration 

As shown in Eq. (2) , DNA coding and XOR operations are firstly launched to convert the plain pixel p ( i ) to a intermediate

gray-scale value t ( i ). The transformation from p ( i ) to t ( i ) is reversible and thus bijective. Therefore it can be simplified as 

t(i ) = s i (p(i )) . (6)

Here, S i = { s i (0) , s i (1) , . . . , s i (256) } , (i ∈ [1 , L ]) is the s-box for substituting p ( i ). It is introduced for synthesizing the en-

cryption effects of R x , R y , R z , R and the DNA operations (encoding, XOR and decoding), as described in Eq. (2) . Specifically, S i
is a bijection from L = { 1 , 2 , · · · , L } to L = { 1 , 2 , · · · , L } . It is determined by the secret key, and allotted for each plain pixel. 

Therefore, the encryption process can be equivalently illustrated in Fig. 1 . 

Referring to Eqs. (2) and (6) , we can further obtain 

d(i ) = sum _ p �
∏ i 

k =1 
s k (p(k )) , (7)

where 
∏ i 

k =1 s k (p(k )) = s 1 (p(1)) � s 2 (p(2)) � · · · � s i (p(i )) . As indicated from Eq. (4) , w ( i ) means the position of d ( i ) in the

ciphertext. On the contrary, w 

−1 (i ) is defined here as its inverse which means c(i ) = d(w 

−1 (i )) . Therefore, we can get the

equivalent representation of the ciphertext as 

c(i ) = sum _ p �
∏ w 

−1 (i ) 

k =1 
s k (p(k )) . (8)

Instead of the original secret key, i.e., [ a 1 , b 1 , x 1 (0), y 1 (0), a 2 , b 2 , x 2 (0), y 2 (0)], details of s-boxes S i , (i ∈ [1 , L ]) and permu-

tation vector w ( i )/ w 

−1 (i ) can be regarded as equivalent key elements [18,20,21,40,41] . They are effective for recovering the

ciphertexts. 

3.2. Cryptanalysis 

In cryptanalysis, chosen-plaintext attack refers to the scenario where adversary can freely select input plaintexts and

obtain corresponding ciphertexts. Generally, he/she will elaborately construct some special images at first. Then, the secret

key or equivalent encryption elements maybe recovered by artful deductions from the plaintext-ciphertext pairs. We use

chosen-plaintext attack in the following cryptanalysis. Cryptanalysis of Wu ’s encryption scheme [34] primary constitutes of

the following procedures. 
3 As there maybe repeated numbers, complementary chaotic iterations may be required. 
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Fig. 1. Equivalent illustration of the encryption scheme under study. 

Fig. 2. The equivalent encryption diagram after removing sum _ p = 

∑ L 
j=1 p( j) mod 256 . 

 

 

 

 

 

1) Removing the effect of sum _ p = 

∑ L 
j=1 p( j) mod 256 . As aforementioned, information of the plaintext is available in

chosen-plaintext attack. Therefore, sum _ p = 

∑ L 
j=1 p( j) mod 256 is known. 

• Referring to Eq. (8) , the encryption effect of the plaintext-related constant sum _ p can be straightforward coun-

teracted as 

c ′ (i ) = sum _ p � c(i ) = 

∏ w 

−1 (i ) 

k =1 
s k (p(k )) . (9) 

The product c ′ ( i ) is much helpful for the subsequent cryptanalysis. 
• Besides, we further define d ′ ( i ) as 

d ′ (i ) = sum _ p � d(i ) = 

∏ i 

k =1 
s k (p(k )) . (10) 

Note that d ′ ( i ) is not available before recovering the permutation vector W . However, it is much beneficial for

the theoretical deduction of W . 
• Combining Eqs. (5) , (7) –(10) , we can obtain {

c ′ (w (i )) = d ′ (i ) , i ∈ [1 , L ] 

C 

′ = W( D 

′ ) . (11) 

• The theoretical illustration of this procedure is shown in Fig. 2 . There are three differences in comparison with

the original encryption scheme ( Fig. 1 ). The first one is that we perform bit-wise XOR to the original ciphertext,
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Fig. 3. Illustration of recovering the permutation vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as given in Eq. (9) , the production is denoted as C ′ . It is equivalent to performing XOR sum _ p subsequent to the

substitution box. As there is an original sum _ p in the cipher, and considering that sum _ p � sum _ p = 0 , therefore

it equals to remove the original sum _ p, as illustrated in the second box (it is blank). After removing the original

sum _ p, the new intermediate product d ′ ( i ) is obtained, given in the third box. As described in Eq. (11) , c ′ ( i ) is
the permutation version of d ′ ( i ). 

• To be concluded, the encryption contribution of the plaintext-related constant sum _ p = 

∑ L 
j=1 p( j) mod 256 can

be removed by doing an XOR operation to the obtained ciphertext, as given in Eq. (9) . The relaxed encryption

procedures after removing sum _ p are illustrated in Fig. 2 , and also in the left half of Fig. 3 . 

2) Recovering the permutation vector W . 

Fig. 3 is given for clearly illustrating the recovery of the permutation vector. In [34] , also described in Figs. 1 and 2 ,

the plain images are firstly stretched to vectors. Therefore, the pixels’ coordinates are also given in one-dimensional

fashion in the following cryptanalysis. However, these vectors (of images) are represented as a matrix in Fig. 3 for

easy representation. 
• Suppose there are three images P 0 = { p 0 (1) , . . . , p 0 ( j) , p 0 ( j + 1) , . . . , p 0 (L ) } , P j = { p j (1) , · · · , p j ( j) , p j ( j +

1) , · · · , p j (L ) } , and P j+1 = { p j+1 (1) , · · · , p j+1 ( j) , p j+1 ( j + 1) , · · · , p j+1 (L ) } . In comparison with P 0 , P j has only

one different pixel p j ( j ), P j+1 also has only one different pixel p j+1 ( j + 1) . Their relationships are described in

Eqs. (12) and (13) , and the different pixels are filled in black in Fig. 3 for easy tracking. {
p 0 (i ) = p j (i ) , i � = j 

p 0 (i ) � = p j (i ) , i = j 
. (12)

{
p 0 (i ) = p j+1 (i ) , i � = j + 1 

p 0 (i ) � = p j+1 (i ) , i = j + 1 

. (13)

• Referring to the equivalent encryption diagram, plain pixels are firstly substituted by the corresponding s-boxes.

These s-boxes are identical for P 0 , P j and P j+1 , therefore, the resultant T 0 , T j and T j+1 have identical relation-

ships as their plaintexts. As illustrated in Fig. 3 , T 0 and T j have one different pixel at j , T 0 and T j+1 have one

different pixel at j + 1 . 
• When the substitution pixel t ( i ) undergoes the following cascaded bit-wise XOR modules, their differences will

spread to large scale of the products. Referring to Eq. (10) and Fig. 3 , we can get the relationship between D 

′ 
0

and D 

′ 
j as {

d ′ 0 (i ) = d ′ 
j 
(i ) , 1 ≤ i ≤ j − 1 

d ′ 0 (i ) � = d ′ 
j 
(i ) , j ≤ i ≤ L 

. (14)
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Fig. 4. Equivalent encryption scheme after recovering the permutation vector. 

 

 

 

 

 

 

 

 

There are a total of L − j + 1 consecutive different pixels in D 

′ 
0 and D 

′ 
j . 

Similarly, the relationship between D 

′ 
0 and D 

′ 
j+1 is {

d ′ 0 (i ) = d ′ 
j+1 

(i ) , 1 ≤ i ≤ j 

d ′ 0 (i ) � = d ′ 
j+1 

(i ) , j + 1 ≤ i ≤ L 
. (15) 

There are a total of L − j consecutive different pixels between D 

′ 
0 and D 

′ 
j+1 . 

• We define A ( P i −P j ) 
is an assemble contains all the coordinates of different pixels between two images P i and

P j . Considering Eqs. (14) and (15) , we can get {
A ( D ′ 0 −D ′ j ) = { j, j + 1 , · · · , L } 
A ( D ′ 0 −D ′ j+1 ) 

= { j + 1 , · · · , L } . (16) 

• Permutation is the last process of the encryption, D 

′ 
0 , D 

′ 
j and D 

′ 
j+1 will be scrambled to C ′ 0 , C ′ j and C ′ j+1 . How-

ever, permutation only changes pixel locations rather than modifying their values. Therefore, the counts of

different pixels remain unchanged, but their positions are randomly distributed. Referring to Eqs. (11) and (16) ,

it is obvious that {
A ( C ′ 0 −C ′ j ) = { w ( j) , w ( j + 1) , · · · , w (L ) } 
A ( C ′ 0 −C ′ j+1 ) 

= { w ( j + 1) , · · · , w (L ) } . (17) 

• It is easy to move Eq. (17) one step further, we can get 

w ( j) = A ( C ′ 0 −C ′ j ) − A ( C ′ 0 −C ′ j+1 ) 
. (18) 

The primary steps for recovering w ( j ), i.e., Eqs. (16) - (18) , are illustrated in three red curves in Fig. 3 . 

Besides, it is easy to conclude that w (L ) = A ( C ′ 0 −C ′ L ) . So that, the permutation vector can be recovered by 

{
w ( j) = A ( C ′ 0 −C ′ j ) − A ( C ′ 0 −C ′ j+1 ) 

1 ≤ j ≤ L − 1 

w ( j) = A ( C ′ 0 −C ′ j ) j = L 
. (19) 

• In chosen-plaintext attack, C 0 and C j and thus C ′ 0 and C ′ j are all known, P 0 and P j can even be elaborately con-

structed. Therefore, the relationship between plaintext-ciphertext pairs and permutation vector can be revealed 

by Eqs. (9) and (19) . 
• To be concluded, the permutation vector W is recoverable with L + 1 chosen-plaintexts. 

3) Retrieving the s-boxes S i . 

With the knowledge of plaintext P , ciphertext C and permutation vector W , the intermediate value T , as shown in

Fig. 1 and Eq. (6) , can be reversely deduced out from Eq. (20) . ⎧ ⎪ ⎨ 

⎪ ⎩ 

C 

′ = C �
∑ L 

j=1 p( j) mod 256 

D 

′ = W 

−1 ( C 

′ ) 
t(i ) = d ′ (i ) � d ′ (i − 1) 
d ′ (0) = 0 

. (20) 

Till now, the encryption scheme can be further relaxed to a s-box-only image cipher, as illustrated in the left part

of Fig 4 . The s-boxes, i.e., S 1 , · · · , S L , are the last secret elements to be recovered. Each of them have 256 particles,

correspond to the assumed 256 gray-level pixels. 
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• Using brute force attack, details of s i can be sequentially retrieved. For example, if we use P 0 = { 0 , 0 , · · · , 0 }
as the input, and get corresponding T 0 = { t 0 (1) , . . . , t 0 ( j) , . . . t 0 (L ) } . Referring to Eq. (6) we can obviously get

that s 1 (0) = t 0 (1) , s 2 (0) = t 0 (2) , · · · , s L (0) = t 0 (L ) . Mathematically, chosen-plaintexts are constructed by P i =
{ i, i, · · · , i } , (i ∈ [0 , 255]) , then T i can be obtained referring to Eq. (20) . Further, these s-boxes are retrieved ac-

cording to ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

s 1 (i ) = t i (1) 
s 2 (i ) = t i (2) 
. . . 
s L (i ) = t i (L ) 

. (21)

• To be concluded, 256 plain images are sufficient for retrieving the full knowledge of the s-boxes. 

3.3. Attack procedures 

Based on the aforementioned cryptanalysis, an executable chosen-plaintext attack is drawn as follows. 

1) Constructing L + 1 chosen-plaintexts P 0 , P 1 , · · · , P i , · · · , P L , their pixels are 

p 0 ( j) = 0 , j ∈ [1 , L ] 

p 1 ( j) = 

{
1 , j = 1 

0 , otherwise 

. . . 

p i ( j) = 

{
1 , j = i 
0 , otherwise 

. . . 

p L ( j) = 

{
1 , j = L 
0 , otherwise 

. (22)

Then obtaining their ciphertexts, denoted as C 0 , C 1 , · · · , C i , · · · , C L , respectively. 

2) Referring to Eq. (9) , calculate C ′ 0 , C ′ 1 , · · · , C ′ i , · · · , C ′ L . 
3) Comparing C ′ 0 with C ′ 1 , · · · , C ′ i , · · · , C ′ L respectively to get the coordinates of differential pixels, i.e., A ( C ′ 0 −C ′ 1 ) ,

A ( C ′ 0 −C ′ 2 ) , · · · , A ( C ′ 0 −C ′ i ) 
, · · · , A ( C ′ 0 −C ′ L ) . 

4) Recovering the particles of permutation matrix W according to Eq. (19) . 

5) Constructing another 255 plaintexts denoted as P 1 −2 , · · · , P i −2 , · · · , P 255 −2 , whose pixels are 

p i −2 ( j) = i, i ∈ [1 , 255] , j ∈ [1 , L ] . 

Their ciphertexts are named as C 1 −2 , · · · , C i −2 , · · · , C 255 −2 , respectively. Without loss of generality, C 0 in Step 1) is

re-written as C 0 −2 for consistency. 

6) With the help of C 0 −2 , C 1 −2 , · · · , C i −2 , · · · , C L −2 and the recovered permutation vector W in Step 4), details of the

s-boxes S i can be recovered according to Eqs. (20) and (21) . 

4. Results and discussions 

The aforementioned cryptanalysis and chosen-plaintext attack have been experimentally verified. In these validating at-

tempts, input key is randomly selected as [ a 1 , b 1 , x 1 (0), y 1 (0), a 2 , b 2 , x 2 (0), y 2 (0)] = [1.31, 1.32, 0.81, 0.82, 1.13, 1.14, 0.83,

0.84], and the gray-level of the test images are assumed as 256. The proposed attack is implemented by Matlab 2018a, and

source codes are openly accessible 4 

4.1. Illustration experiment 

The image size is firstly assumed as 3 × 3 for giving a clear illustration. The attack is implemented strictly according to

the steps listed in Section 3.3 . 

• Steps 1–2 . As there are 9 pixels in the plaintext, 9 + 1 = 10 chosen-plaintexts are firstly employed to recover the

permutation vector. They are constructed according to Eq. (22) , and listed in the first two columns in Table 3 . Referring

to the attack procedures, these plaintexts are encrypted and then bit-wise XORed with corresponding sum _ p. The

resultant C and C ′ are also given in Table 3 . 
4 You can access the source codes via https://github.com/lurenjia212/Breaking _ DNA _ Henon . 

http://https://github.com/lurenjia212/Breaking_DNA_Henon
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Table 3 

Recovery of the permutation vector when the image size is 3 × 3 (attack steps 1–2). 

Chosen-plaintexts P Ciphertexts C Products C ′ after removing sum _ p

P 0 0,0,0,0,0,0,0,0,0 C 0 61,253,201,213,202,33,255,236,203 C ′ 0 61,253,201,213,202,33,255,236,203 

P 9 1,0,0,0,0,0,0,0,0 C 9 60,252,200,212,203,34,254,237,202 C ′ 9 61,253,201,213,202, 35 ,255,236,203 

P 8 0,1,0,0,0,0,0,0,0 C 8 60,252,200,212,203,33,254,237,203 C ′ 8 61,253,201,213,202, 32 ,255,236, 202 

P 7 0,0,1,0,0,0,0,0,0 C 7 60,252,200,212,203,33,255,237,203 C ′ 7 61,253,201,213,202, 32 , 254 ,236, 202 

P 6 0,0,0,1,0,0,0,0,0 C 6 60,252,200,212,201,34,252,237,200 C ′ 6 61,253,201,213, 200 , 35 , 253 ,236, 201 

P 5 0,0,0,0,1,0,0,0,0 C 5 60,252,202,212,201,34,252,237,200 C ′ 5 61,253, 203 ,213, 200 , 35 , 253 ,236, 201 

P 4 0,0,0,0,0,1,0,0,0 C 4 62,252,202,212,201,34,252,237,200 C ′ 4 63 ,253, 203 ,213, 200 , 35 , 253 ,236, 201 

P 3 0,0,0,0,0,0,1,0,0 C 3 61,252,201,212,202,33,255,236,203 C ′ 3 60 ,253, 200 ,213, 203 , 32 , 254 , 237 , 202 

P 2 0,0,0,0,0,0,0,1,0 C 2 62,254,202,212,201,34,252,239,200 C ′ 2 63 , 255 , 203 ,213, 200 , 35 , 253 , 238 , 201 

P 1 0,0,0,0,0,0,0,0,1 C 1 62,254,202,214,201,34,252,239,200 C ′ 1 63 , 255 , 203 , 215 , 200 , 35 , 253 , 238 , 201 

Table 4 

Recovery of the permutation vector when the image size is 3 × 3 (attack 

steps 3–4). 

Calculating A ( C ′ 0 −C ′ j ) Recover w ( j) = A ( C ′ 0 −C ′ j ) − A ( C ′ 0 −C ′ j+1 ) 

j = 9 6 w (9) = 6 

j = 8 6, 9 w (8) = 9 

j = 7 6, 7 , 9 w (7) = 7 

j = 6 5 , 6, 7, 9 w (6) = 5 

j = 5 3 , 5, 6, 7, 9 w (5) = 3 

j = 4 1 , 3, 5, 6, 7, 9 w (4) = 1 

j = 3 1, 3, 5, 6, 7, 8 , 9 w (3) = 8 

j = 2 1, 2 , 3, 5, 6, 7, 8, 9 w (2) = 2 

j = 1 1, 2, 3, 4 , 5, 6, 7, 8, 9 w (1) = 4 

Table 5 

Recovery of the substitution boxes when the image size is 3 × 3 (attack steps 5–6). 

Chosen-plaintexts P Ciphertexts C Calculated intermediate elements T Information of S 

P 0 −2 0,0,0,0,0,0,0,0,0 C 0 −2 61,253,201,213,202,33,255,236,203 T 0 −2 213 ,40,17,209,244,3,53,52,234 s 1 (0) → s 9 (0) 

� � � � � � �

P 99 −2 99,99, ���, 99 C 99 −2 182,134,209,61,65,57,23,244,64 T 99 −2 70, 187 ,114,66,103,144,86,87,121 s 1 (99) → s 9 (99) 

� � � � � � �

P 179 −2 179,179, ���, 179 C 179 −2 182,182,49,237,65,217,199,20,64 T 179 −2 166,91,162,162,135,112,134,135, 153 s 1 (179) → s 9 (179) 

� � � � � � �

P 255 −2 255,255, ���, 255 C 255 −2 202,10,193,221,61,41,247,228,60 T 255 −2 42,215,238,46,11,252,202,203,21 s 1 (255) → s 9 (255) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Steps 3–4 . Steps 3 and 4 are the deduction processes of the permutation vector. We firstly obtain A ( C ′ 0 −C ′ j ) 
, i.e., the

coordinates of the differential pixels between C ′ 0 and its peers. The differential pixels have been underlined in Table 3 ,

and their coordinates are given in the second column of Table 4 . The following step for recovering the permutation

matrix is to compare A ( C ′ 0 −C ′ j ) 
according to Eq. (19) . The differential particles between A ( C ′ 0 −C ′ j ) 

and A ( C ′ 0 −C ′ j+1 ) 
have

been underlined in the second column of Table 4 , and the corresponding recovered elements of the permutation

vector are listed in the third column. 
• Steps 5–6 . The s-boxes are retrieved by the 5 th and 6 th steps of the proposed attack. A total of 256 chosen-plaintexts

are required for completely recovering all the s-boxes. For each plaintext-ciphertext pair, we firstly use sum _ p and

the recovered permutation matrix W to obtain a intermediate matrix T , as given in Eq. (20) . We know that T refers

to the production of the s-box substitution, the s-boxes can be thus inversely recovered according to Eq. (21) . The

results are partially listed in Table 5 . For example, the first row lists the recovered elements by P 0 −2 , they are s 1 (0) =
213 , s 2 (0) = 40 , · · · , s 9 (0) = 234 . In the encryption part, p(1) = 0 will be transformed to s 1 (0) = 213 after the DNA

encryption procedures (synthesized as the s-box S 1 ). Similarly, p(9) = 0 will be converted to s 9 (0) = 234 whereas

p(2) = 99 will be converted to s 2 (99) = 187 . 

With the obtained permutation vector and s-boxes, any received ciphertext can be recovered. Suppose that there is a

plaintext P = { 0 , 99 , 212 , 22 , 199 , 126 , 58 , 77 , 179 } , it is encrypted into C = { 159 , 162 , 160 , 25 , 30 , 241 , 17 , 103 , 104 } using the

aforementioned secret key. The plaintext can be recovered referring to the inverse implementation of the equivalent encryp-

tion process that is depicted in Fig. 1 . 

• The first step is doing a inverse permutation, whose forward scrambling rule is given in Eq. (4) and the permutation

vector has been recovered in Table 4 . We can get D = { 25 , 162 , 103 , 159 , 160 , 30 , 17 , 104 , 241 } . 



J. Chen, L. Chen and Y. Zhou / Information Sciences 520 (2020) 130–141 139 

Fig. 5. Experiment results of the proposed chosen-plaintext attack: (a) plain image lenna; (b) ciphertext using the given key; (c) recovered image with the 

retrieved equivalent key elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The next issue is the conversion from D to T . Through Eq. (2) , it is obvious that t(i ) = d(i ) � d(i − 1) with d(0) =
sum _ p for the first particle 5 The resultant T = { 213 , 187 , 197 , 248 , 63 , 190 , 15 , 121 , 153 } . 

• Finally, the plain pixels are sequentially recovered by searching the s-boxes, referring to Eq. (6) . For example, we

know that the 1 st particle t(1) = 213 . Then we search the s-box for the 1 st pixel, i.e., S 1 , we can get s 1 (0) = 213 , as

underlined in the first row of Table 5 . Therefore, p(1) = 0 . For the 2 nd pixel, t(2) = 187 corresponds to s 2 (99) = 187 ,

thus p(2) = 99 . The final recovered pixel is p(9) = 179 because t(9) = 153 = s 9 (179) . Repeating sequentially for all

pixels, the recovered image is P = { 0 , 99 , 212 , 22 , 199 , 126 , 58 , 77 , 179 } . The particles s 2 (99) = 187 and s 9 (179) = 153

are also underlined in the corresponding rows in Table 5 . 
• As can be observed, the plaintext has been successfully recovered by the equivalent encryption elements. The pro-

posed attack is thus validated. 

4.2. Experimental results 

The proposed attack is further verified when the image size is 256 × 256. The recovered permutation vector is partially

given in Eq. (23) . The S 65536 which refers to the s-box for the last pixel, is partially demonstrated in Eq. (24) . With these

equivalent elements, the received ciphertexts can be successfully recovered. Fig. 5 (a) is the standard lenna image, its cipher-

text use aforementioned secret key is shown in Fig. 5 (b). It has been successfully recovered, as demonstrated in Fig. 5 (c).

W _ rec = 

⎡ 

⎢ ⎢ ⎣ 

50975 17841 · · · 64133 

8909 4945 · · · 30873 

. . . 
. . . 

. . . 
. . . 

29305 41654 · · · 46461 

⎤ 

⎥ ⎥ ⎦ 

256 ×256 

(23)

⎡ 

⎢ ⎢ ⎣ 

0 1 · · · 15 

16 17 · · · 31 

. . . 
. . . 

. . . 
. . . 

240 241 · · · 255 

⎤ 

⎥ ⎥ ⎦ 

Plain pixel 

⇔ 

⎡ 

⎢ ⎢ ⎣ 

49 33 · · · 193 

48 32 · · · 192 

. . . 
. . . 

. . . 
. . . 

62 46 · · · 206 

⎤ 

⎥ ⎥ ⎦ 

Encrypted pixel 

(24)

4.3. Discussions 

As described in Section 3.3 , a total of L + 255 chosen-plaintexts are sufficient to recover the permutation vector and s-

boxes. Referring to Eq. (19) , particles of permutation vector can be produced one-by-one in a reverse order, which means

w ( L ) is firstly obtained and { w (L − 1) , w (L − 2) , · · · , w (1) } will be sequentially recovered. In this case, only C 0 , C j , A ( C ′ 0 −C ′ j ) 
,

and A ( C ′ 0 −C ′ j+1 ) 
are required for the recovery of w ( j ), as indicated in Eq. (19) . In other words, information of C j / C 

′ 
j is not

required to be stored permanently, and the space complexity can be significantly relaxed to be acceptable by a personal

computer. 

Recently, plaintext-related key stream generation mechanism has been widely adopted in chaos-based image ciphers

[31,33,38] . Typically, a plaintext-related variable (a random pixel or statistical feature of the image) is firstly extracted, and

subsequently used to disturb the generation of key stream elements. In this scene, different plaintexts will bring about

distinct key elements, and the avalanche effect is thus achieved. However, this plaintext-related perturbation should be
5 In the original paper (Section 3.3 in [34] ), sum _ p = 

∑ L 
j=1 p( j) mod 256 is not obtainable. If so, the first pixel cannot be recovered correctly. However, 

brute force attack can be employed as a complementary step. 



140 J. Chen, L. Chen and Y. Zhou / Information Sciences 520 (2020) 130–141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transmitted as component of secret key to the receiver. Otherwise, the key scheduling process cannot be correctly imple-

mented and the decryption is consequently infeasible. Taking the cipher under study as an example, summation of plain

image sum _ p is seed of the diffusion process. However, it does not serve as component of secret key and further makes the

first plain pixel cannot be correctly recovered. 

Essentially, such encryption schemes with plaintext-related key stream generation mechanism cannot be regarded as one-

time-pad (OTP) ciphers either. That is because the key stream of OTP should must be independent from the plaintext. This

is a basic cryptographic requirement according to Shannon’s principle [25] . Prior to the starting of secure transmission, key

negotiation is firstly implemented without information of what will be encrypted and when the encryption is performed.

In other words, the contracted key is feasible for encrypting/decrypting arbitrary plaintexts rather than a specified one

[13,15,31,33] . However, input secret key or key stream elements of recently proposed OTP image ciphers [13,15,31,33] are

produced with the extracted information of the plaintext. They cannot be generated without knowledge of plaintexts and

hence doesn’t comply with Shannon’s theory. Besides, key streams of these ciphers are essentially produced case-by-case in

practical applications. Such a pattern makes the key exchanging more complex and decrease the encryption efficiency at the

same time. 

However, it is quite another thing when the plaintext-related disturbance is retrievable in the decryption end. The fash-

ion adopted in [6,39] is a typical case. It takes advantageous that statistical features of plaintext and permutation ciphertext

are identical since permutation does not change pixel values. In [6] , counts of A, T, C, G of the produced DNA base string

are mixed as the plaintext-related constant to disturb key stream generation of the permutation process. Therefore, dif-

ferent plaintexts bring about individual permutation vectors. In this case, plaintext attacks to recover permutation vector

[18,20,21] are consequently infeasible because the produced permutation vectors are different from images. Namely, the

permutation vector in chosen-plaintext scenario is not the one in other interested encryption case. Besides, this perturba-

tion can be self-adaptively recovered from the permutation ciphertext thus is not required to be transmitted as component

of the key. Self-adaptive retrievable plaintext-related disturbance is advisable for the chaotic cipher in the future. 

5. Conclusions 

In this paper, the security of an image encryption scheme using Hénon-Sine map and DNA random coding is evalu-

ated. Substitution boxes are firstly introduced to equivalently synthesize the encryption effects of DNA random coding and

XOR operations. Details of the substitution boxes and permutation vector are regarded as equivalent encryption elements.

Comprehensive cryptanalysis is conducted, based on which a chosen-plaintext attack is step-by-step described and experi-

mentally verified. Discussions with respect to the design and cryptanalysis of chaotic ciphers are also given, and we hope

they are beneficial for the future developments of chaotic cryptography. 

Declaration of Competing Interest 

The authors declare that they have no conflict of interest. 

Acknowledgments 

This work is funded by the National Natural Science Foundation of China (Nos. 61802055 , 61771121 , 61801104 ), in part

by The Science and Technology Development Fund , Macau SAR (File no. 189/2017/A3 ), and by the Research Committee at

University of Macau under Grants MYRG2016-00123-FST and MYRG2018-00136-FST . 

References 

[1] A. Akhavan , A. Samsudin , A. Akhshani , Cryptanalysis of an image encryption algorithm based on DNA encoding, Opt. Laser Technol. 95 (2017) 94–99 . 

[2] G. Alvarez , S. Li , Some basic cryptographic requirements for chaos-based cryptosystems, Int. J. Bifur. Chaos 16 (8) (2006) 2129–2151 . 

[3] A . Belazi , A .A .A . Ellatif , S. Belghith , A novel image encryption scheme based on substitution-permutation network and chaos, Signal Process. 128 (2016)
155–170 . 

[4] X. Chai , Y. Chen , L. Broyde , A novel chaos-based image encryption algorithm using DNA sequence operations, Opt. Lasers Eng. 88 (2017) 197–213 . 
[5] X. Chai , Z. Gan , K. Yang , Y. Chen , X. Liu , An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA

sequence operations, Signal Process. 52 (2017) 6–19 . 
[6] J. Chen , Z. Zhu , L. Zhang , Y. Zhang , B. Yang , Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image

encryption, Signal Process. 142 (2018) 340–353 . 

[7] A.-V. Diaconu , Circular inter–intra pixels bit-level permutation and chaos-based image encryption, Inf. Sci. 355 (2016) 314–327 . 
[8] J. Fridrich , Symmetric ciphers based on two-dimensional chaotic maps, Int. J. Bifur. Chaos 8 (6) (1998) 1259–1284 . 

[9] C. Fu , W. Meng , Y. Zhan , Z. Zhu , F.C.M. Lau , C.K. Tse , H. Ma , An efficient and secure medical image protection scheme based on chaotic maps, Comput.
Biol. Med. 43 (8) (2013) 10 0 0–1010 . 

[10] X.-Q. Fu , B.-C. Liu , Y.-Y. Xie , W. Li , Y. Liu , Image encryption-then-transmission using DNA encryption algorithm and the double chaos, IEEE Photon. J.
10 (3) (2018) 1–15 . 

[11] A. Girdhar , V. Kumar , A RGB image encryption technique using Lorenz and Rossler chaotic system on DNA sequences, Multimed. Tools Appl. (2018)

1–23 . 
[12] R. Girija , H. Singh , Enhancing security of double random phase encoding based on random S-Box, 3D Res. 9 (2) (2018) 15 . 

[13] R. Guesmi , M. Farah , A. Kachouri , M. Samet , A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2,
Nonlinear Dyn. 3 (83) (2016) 1123–1136 . 

[14] M. Hamdi , R. Rhouma , S. Belghith , A selective compression-encryption of images based on SPIHT coding and Chirikov standard map, Signal Process.
131 (2017) 514–526 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100006469
https://doi.org/10.13039/501100004733
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0014


J. Chen, L. Chen and Y. Zhou / Information Sciences 520 (2020) 130–141 141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] T. Hu , Y. Liu , L. Gong , S. Guo , H. Yuan , Chaotic image cryptosystem using DNA deletion and DNA insertion, Signal Process. 134 (2017) 234–243 . 
[16] Z. Hua , B. Zhou , Y. Zhou , Sine-transform-based chaotic system with FPGA implementation, IEEE Trans. Ind. Electron. 65 (3) (2018) 2557–2566 . 

[17] I. Hussain , J. Ahmed , A. Hussain , An image encryption technique based on coupled map lattice and one-time S-boxes based on complex chaotic system,
J. Intell. Fuzzy Syst. 29 (4) (2015) 1493–1500 . 

[18] A. Jolfaei , X. Wu , V. Muthukkumarasamy , On the security of permutation-only image encryption schemes, IEEE Trans. Inf. Forensics Secur. 11 (2) (2016)
235–246 . 

[19] M. Kumar , A. Vaish , An efficient encryption-then-compression technique for encrypted images using SVD, Digit. Signal Process. 60 (2017) 81–89 . 

[20] C. Li , K.-T. Lo , Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks, Signal Process. 91 (4) (2011)
949–954 . 

[21] S. Li , C. Li , G. Chen , N.G. Bourbakis , K. Lo , A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks, Signal
Process. 23 (3) (2008) 212–223 . 

[22] Y. Liu , J. Tang , T. Xie , Cryptanalyzing a RGB image encryption algorithm based on DNA encoding and chaos map, Opt. Laser Technol. 60 (2014) 111–115 .
[23] K. Nosrati , C. Volos , A. Azemi , Cubature Kalman filter-based chaotic synchronization and image encryption, Signal Process. 58 (2017) 35–48 . 

[24] P. Ping , F. Xu , Y. Mao , Z. Wang , Designing permutation–substitution image encryption networks with Henon map, Neurocomputing 283 (2018) 53–63 .
[25] C.E. Shannon , Communication theory of secrecy systems, Bell Syst. Tech. J.l 28 (4) (1949) 656–715 . 

[26] H. Singh , Nonlinear optical double image encryption using random-optical vortex in fractional Hartley transform domain, Opt. Appl. 47 (4) (2017) . 

[27] H. Singh , A. Yadav , S. Vashisth , K. Singh , Fully phase image encryption using double random-structured phase masks in gyrator domain, Appl. Opt. 53
(28) (2014) 6472–6481 . 

[28] H. Singh , A. Yadav , S. Vashisth , K. Singh , Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane,
Opt. Lasers Eng. 67 (2015) 145–156 . 

[29] E. Solak , O.T. Yildiz , Cryptanalysis of Fridrich’s chaotic image encryption, Int. J. Bifur. Chaos 20 (5) (2010) 1405–1413 . 
[30] X. Tong , The novel bilateral - diffusion image encryption algorithm with dynamical compound chaos, J. Syst. Softw. 85 (4) (2012) 850–858 . 

[31] X. Wang , Y. Zhang , X. Bao , A novel chaotic image encryption scheme using DNA sequence operations, Opt. Lasers Eng. 73 (73) (2015) 53–61 . 

[32] Y. Wang , Y. Zhao , Q. Zhou , Z. Lin , Image encryption using partitioned cellular automata, Neurocomputing 275 (2018) 1318–1332 . 
[33] X. Wei , L. Guo , Q. Zhang , J. Zhang , S. Lian , A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system, J.

Syst. Softw. 85 (2) (2012) 290–299 . 
[34] J. Wu , X. Liao , B. Yang , Image encryption using 2D Hénon-Sine map and DNA approach, Signal Process. 153 (2018) 11–23 . 

[35] X. Wu , K. Wang , X. Wang , H. Kan , Lossless chaotic color image cryptosystem based on DNA encryption and entropy, Nonlinear Dyn. 90 (2) (2017)
855–875 . 

[36] X. Wu , K. Wang , X. Wang , H. Kan , J. Kurths , Color image DNA encryption using NCA map-based CML and one-time keys, Signal Process. 148 (2018)

272–287 . 
[37] Y.-G. Yang , J. Tian , H. Lei , Y.-H. Zhou , W.-M. Shi , Novel quantum image encryption using one-dimensional quantum cellular automata, Inf. Sci. 345

(2016) 257–270 . 
[38] G. Ye , X. Huang , An efficient symmetric image encryption algorithm based on an intertwining logistic map, Neurocomputing 251 (2017) 45–53 . 

[39] L.Y. Zhang , X. Hu , Y. Liu , K. Wong , J. Gan , A chaotic image encryption scheme owning temp-value feedback, Commun. Nonlinear Sci. Numer. Simul. 19
(10) (2014) 3653–3659 . 

[40] L.Y. Zhang , Y. Liu , C. Wang , J. Zhou , Y. Zhang , G. Chen , Improved known-plaintext attack to permutation-only multimedia ciphers, Inf. Sci. 430 (2018)

228–239 . 
[41] L.Y. Zhang , Y. Liu , K.-W. Wong , F. Pareschi , Y. Zhang , R. Rovatti , G. Setti , On the security of a class of diffusion mechanisms for image encryption, IEEE

Trans. Cybern. (99) (2017) 1–13 . 
[42] Q. Zhang , L. Guo , X. Wei , A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system, Optik 124 (18)

(2013) 3596–3600 . 
[43] Y. Zhang , W. Wen , M. Su , M. Li , Cryptanalyzing a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system,

Optik 125 (4) (2014) 1562–1564 . 

[44] Y. Zhang , D. Xiao , W. Wen , K. Wong , On the security of symmetric ciphers based on DNA coding, Inf. Sci. 289 (2014) 254–261 . 
[45] Y. Zhang , J. Zhou , F. Chen , L.Y. Zhang , D. Xiao , B. Chen , X. Liao , A block compressive sensing based scalable encryption framework for protecting

significant image regions, Int. J. Bifur. Chaos 26 (11) (2016) 1650191 . 
[46] Y.-Q. Zhang , X.-Y. Wang , A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice, Inf. Sci. 273 (2014) 329–351 .

[47] N. Zhou , S. Pan , S. Cheng , Z. Zhou , Image compression–encryption scheme based on hyper-chaotic system and 2D compressive sensing, Opt. Laser
Technol. 82 (2016) 121–133 . 

http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0040
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0040
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0040
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0040
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0040
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0040
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0040
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0041
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0041
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0041
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0041
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0041
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0041
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0041
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0041
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0042
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0042
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0042
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0042
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0043
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0043
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0043
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0043
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0043
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0044
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0044
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0044
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0044
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0044
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0045
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0045
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0045
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0045
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0045
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0045
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0045
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0045
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0046
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0046
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0046
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0047
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0047
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0047
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0047
http://refhub.elsevier.com/S0020-0255(20)30099-2/sbref0047

	Cryptanalysis of a DNA-based image encryption scheme
	1 Introduction
	2 The image cipher under study
	2.1 Notations
	2.2 Preliminaries
	2.3 The encryption procedures

	3 Cryptanalysis and attack
	3.1 Equivalent illustration
	3.2 Cryptanalysis
	3.3 Attack procedures

	4 Results and discussions
	4.1 Illustration experiment
	4.2 Experimental results
	4.3 Discussions

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


